Production optimisée de biodiesel à partir d’huiles de graines de Carapa procera et de Hura crepitans avec un catalyseur acide et basique dérivés de leurs coques

Contenu principal de l'article

Michée Kazadi Mputu
Priscille Kwalul
Arsene Muabu
Ismael Mulumba
Arnold Mulula
Taba Kalulu
Théodore Kazadi
Kasuku Wanduwa
Joséphine Ntumba

Résumé

La demande croissante en sources d’énergie renouvelable a suscité un intérêt pour la production de biodiesel à partir de matières premières non
conventionnelles. Cette étude se concentre sur le biodiesel dérivé des huiles de Carapa procera et de Hura crepitans, utilisant un catalyseur acide
et basique issus de leurs coques. Les huiles de Carapa procera (HCP) et de Hura crepitans (HHC) ont été transestérifiées avec de l'éthanol, un
catalyseur acide étant employé pour HCP et un catalyseur basique pour HHC. Ce dernier a montré une efficacité de transestérification et a
conservé son activité catalytique après plusieurs utilisations. Des rendements élevés en esters éthyliques ont été obtenus pour les huiles de
Carapa procera (EEHCP) et de Hura crepitans (EEHHC). Un mélange B10 d'EEHHC et de diesel commercial a satisfait aux spécifications
ASTM D6751, notamment en ce qui concerne le point d'écoulement, le point d'éclair, la couleur et la densité. Toutefois, le biodiesel B100 de
Carapa procera affichait des valeurs de viscosité et d'indice d'acide légèrement supérieures aux normes, tout comme la viscosité l'EEHHC. Cela
nécessite un traitement supplémentaire, tel qu'un temps de réaction prolongé ou un mélange avec du pétrodiesel pour ajuster la viscosité. Sur
base de ces résultats, le biodiesel de Hura crepitans peut être mélangé au diesel commercial jusqu'à 10 % en volume, répondant aux normes
ASTM. Une optimisation supplémentaire est recommandée pour le B100 de Carapa procera afin d'assurer sa conformité totale aux spécifications
du biodiesel

Details de l'article

Rubrique

Articles

Références

Abdelouahed, S., Boulghiti, H., & Kalloum, S. (2016). Preparation of biodiesel from vegetable oil using a heterogeneous catalyst. [Doctoral Thesis, University Ahmed Draïa-Adrar]. https://dspace.univ-adrar.edu.dz/jspui/handle/123456789/2643.

Ajala, O.O., Oyelade, J.O., Oke, E.O., Oniya, O.O., & Adeoye, B.K. (2023). A nonlinear autoregressive exogenous neural network (NARX-NN) model for the prediction of solvent-based oil extraction from Hura crepitans seeds. Chem. Prod. Process Model, 18(4), 647–655. https://doi.org/10.1515/cppm-2022-0032.

Athar, M., Imdad, S., Zaidi, S., Yusuf, M., Kamyab, H., Klemeš, J.J., Chelliapan, S. (2022). Biodiesel production by single-step acid-catalysed transesterification of Jatropha oil under microwave heating with modelling and optimisation using response surface methodology. Fuel, (322), 124205. https://doi.org/10.1016/j.fuel.2022.124205.

ASTM International. (2006). ASTM D4052-96 Standard test method for density of liquid by digital density meter. Annual Book of ASTM Standards.

ASTM International. (2006). ASTM D445-04 Standard method for kinematic viscosity of transparent and opaque liquids (and calculation of dynamic viscosity). Annual Book of ASTM Standards.

ASTM International. (2006). ASTM D97-05a Standard test method for pour point of petroleum products. Annual Book of ASTM Standards.

ASTM International. (2006). ASTM D4294 Standard test method for sulfur in petroleum and petroleum products by energy dispersive X-ray fluorescence spectrometry. Annual Book of ASTM Standards.

ASTM International. (2006). ASTM D130 Standard test method for corrosiveness to copper from petroleum products by copper strip test. Annual Book of ASTM Standards.

ASTM International. (2006). ASTM D1500-04a Standard test method for ASTM color of petroleum products (ASTM color scale). Annual Book of ASTM Standards.

ASTM International. (2006). ASTM D93-02a Standard test method for flash point by Pensky-Martens closed cup tester. Annual Book of ASTM Standards.

Banga, S., & Pathak, V.V. (2023). Biodiesel production from waste cooking oil: A comprehensive review on the application of heterogenous catalysts. Energy Nexus, (10), 100209. https://doi.org/10.1016/j.nexus.2023.100209.

Bettahar, Z., Cheknane, B., & Boutemak, K. (2016). Étude de la transestérification d’un mélange des huiles usagées pour la production du biodiesel. J. Renew. Energies, 19(4), 605–615.

Dwivedi, G., Jain, S., Shukla, A.K., Verma, P., Verma, T.N., & Saini, G. (2022). Impact analysis of biodiesel production parameters for different catalyst. Environ. Dev. Sustain, 1–21. https://doi.org/10.1007/s10668-021-02073-w.

Fadairo, A.A., Wong, P.K., Ip, W.F., Ghadikolaei, M.A., Zhe, C., Ng, B., & Lian, Z.D. (2024). Impact of neem oil biodiesel blends on physical and chemical properties of particulate matter emitted from diesel engines. Environ. Pollut,124972. https://doi.org/10.1016/j.envpol.2024.124972.

Fonseca, J.M., Teleken, J.G., Cinque A., V., & da Silva, C. (2019). Biodiesel from waste frying oils: Methods of production and purification. Energy Convers. Manag, 18(4), 205–218. https://doi.org/10.1016/j.enconman.2019.01.061.

Hasannia, S., Kazemeini, M., & Seif, A. (2024). Optimizing parameters for enhanced rapeseed biodiesel production: A study on acidic and basic carbon-based catalysts through experimental and DFT evaluations. Energy Convers. Manag, 303, 118201. https://doi.org/10.1016/j.enconman.2024.118201

Image Hura crepitans seeds. Disponible à : https://www.shop-vegetable.com/wp-content/uploads/2019/09/hura_crepitans_seeds-e1637158302573.jpg.

Kabayo, S.M., Kindala, J.T., Nkanga, C.I., Krause, R.W., & Taba, K.M. (2019). Preparation and characterization of solid acid catalysts derived from coffee husks. Int. J. Chem. Sci, 3(6), 5–13.

Kouassi, A., Konan, J., N’Cho, A.J., & Kouadio, M.N. (2023). Effect of biological activity of Carapa procera DC. (Meliaceae) seed oil on the tomato leaf miner, Tuta absoluta Meyrick 1917 (Lepidoptera: Gelechiidae). PREPRINT (Version 1) available at Research Square.. https://doi.org/10.21203/rs.3.rs-2776778/v1.

Lankoandé, B., Ouédraogo, A., Boussim, J.I., & Lykke, A.M. (2017). Identification of determining traits of seed production in Carapa procera and Pentadesma butyracea, two native oil trees from riparian forests in Burkina Faso, West Africa. Biomass Bioenergy, 102, 37–43. https://doi.org/10.1016/j.biombioe.2017.04.002.

Li, N., Miao, X., & Xue, B. (2024). rGO@CaO/NiO as a bifunctional heterogeneous nanocatalyst for high-quality biodiesel production from degraded waste oil by microwave-assisted: Diesel engine parameters assessment. Renewable Energy, 121513. https://doi.org/10.1016/j.renene.2024.121513.

Lompo J. M. D. (2008). Analysis and sizing of the production processes for the fuels of the future: Esterification processes. [Memory for obtaining the rural equipment engineer, International Institute for water and Environemental Engeneering], (72), 14-20.

Mulula, A., Bouzina, A., Debroux, B., Muabu, A., Mukebu, E., Ntumba, J.K., & Manoka, T.N. (2024). Valorization of Afzelia bella oilseeds cake in bioethanol production using 1-butyl-3-methyl-imidazolium chloride ionic liquid and dilute sulfuric acid pretreatment. Notulae Scientia Biologicae, 16(2), 11967-11967. https://doi.org/10.55779/nsb16211967.

Mulula, A., Manoka, T.N. Physicochemical properties of biodiesel from Congolese non-edible oleaginous plant Allanblackia floribunda Oliv. 2021. Sch. Int. J. Chem. Mater. Sci, 4(11), 304–309.

Mulula, A., Thierno, N.M., Bayindu, E.B., & Bouzina, A.D. (2022). Fourier Transform Infrared (FTIR) Analysis of Fatty Acid Methyl Ester from Congolese non-edible Afzelia bella seeds oil. Asian J. Appl. Chem. Res., 11(4), 15–24. https://doi.org/10.9734/ajacr/2022/v11i430262

Nonviho, G., Paris, C., Muniglia, L., Sessou, P., & Agbangnan, D.C.P. (2014). Chemical characterization of Lophira lanceolata and Carapa procera seed oils: Analysis of fatty acids, sterols, tocopherols, and tocotrienols. Res. J. Chem. Sci., 4(9), 57–62. https://hal.univ-lorraine.fr/hal-01592604v1.

Nsomue, J.M., Bolangongo, M.N., Mulula, A., Mbuyi, K.H., Kashishi, K.T., Taba, K.M., & Ntumba, J.K. (2022). Valorization of Carapa procera oil and evaluation in vitro of antimalarial activity of its bitter content. Int. Res. J. Pure Appl. Chem., 23(3), 10–18. https://doi.org/10.9734/irjpac/2022/v23i330462.

Ntumba, J.K., Mulula, A., Kashishi, K.T., Mifundu, M.N., Robiette, R., & Taba, K.M. (2017). Physicochemical properties of diacetylenic light fuel oil from Congolese oleaginous plant Ongokea gore (Hua) Pierre. J. Appl. Chem., 1, 7176317. https://doi.org/10.1155/2017/7176317.

Oyekunle, D.T., Gendy, E.A., Barasa, M., Oyekunle, D.O., Oni, B., & Tiong, S.K. (2024). Review on utilization of rubber seed oil for biodiesel production: Oil extraction, biodiesel conversion, merits, and challenges. Cleaner Eng. Technol, 100773. https://doi.org/10.1016/j.clet.2024.100773.

Oyelade, J.O., Idowu, D.O., Oniya, O.O., & Ogunkunle, D.O. (2017). Optimization of biodiesel production from sandbox (Hura crepitans L.) seed oil using two different catalysts. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39(12),1242–1249. https://doi.org/10.1080/15567036.2017.1320691.

Owaba, A.D., Arueniobebh, F., Bunu, S.J., Rafiu, R.O., Johnson, E.C., & Etim, E.I. (2024). Spectroscopic analysis, aphrodisiac potential of Carapa procera stem bark extract in male Wistar rats and in silico studies of hexadecanoic and oleic acids on phosphodiesterase-5 and adenylcyclase enzymes. Biomed. J. Sci. Tech. Res, 54(5), 46343–46356. http://dx.doi.org/10.26717/BJSTR.2024.54.008609.

Paparao, J., Bhopatrao, S., Murugan, S., Kuti, O.A. (2023). Optimization of a low heat rejection engine run on oxy-hydrogen gas with a biodiesel-diesel blend. Fuel Process, Technol., 241, 107625. https://doi.org/10.1016/j.fuproc.2022.107625.

Prahmana, R.A., Darmanto, P.S., Juangsa, F.B. Reksowardojo, I.K., Prakoso, T., & Hendrarsakti. (2024). Experimental investigation on the effects of zinc oxide and goethite as additives in a diesel engine fueled by pure palm oil. Case Stud. Therm. Eng. 61, 104993. https://doi.org/10.1016/j.csite.2024.104993.

Rajpoot, A.S., Choudhary, T., Chelladurai, H., Rajak, U., & Sahu, M.K. (2023). Comparison of the effect of CeO2 and CuO2 nanoparticles on performance and emission of a diesel engine fueled with Neochloris oleoabundans algae biodiesel. Mater. Today Proc, 2214-7853. https://doi.org/10.1016/j.matpr.2023.03.233.

Sanogo, S., Sacandé, M., Van Damme, P., & NDiaye, I. (2013). Caractérisation, germination et conservation des graines de Carapa procera DC. (Meliaceae), une espèce utile en santé humaine et animale. Biotechnol. Agron. Soc. Environ, 17(2), 321–331. http://www.bib.fsagx.ac.be/base/.

Sebayang, A.H., Kusumo, F., Milano, J., Shamsuddin, A.H., Silitonga, A.S., & Ideris, F. (2023). Optimization of biodiesel production from rice bran oil by ultrasound and infrared radiation using ANN-GWO. Fuel, (346), 128404. https://doi.org/10.1016/j.fuel.2023.128404.

Silou, T. 2014. Corps gras non conventionnels du Bassin du Congo : Caractérisation, biodiversité et qualité. OCL, 21(2). https://doi.org/10.1051/ocl/2013044.

Silou, T., Moussounda-Moukouari, R., Bikanga, R., Pamba-Boundena, H., Moussoungou, T., Mampouya, D., & Chalchat, J.C. (2017). Small-scale production in the Congo basin of low-acid carotene-rich red palm oil. OCL, 24(5). https://doi.org/10.1051/ocl/2017017.

Vellaiyan, S., Aljohani, K., Aljohani, B.S., & Reddy, B.S.R. (2024). Enhancing waste-derived biodiesel yield using recyclable zinc sulfide nanocatalyst: Synthesis, characterization, and process optimization. Results Eng, (23), 102411. https://doi.org/10.1016/j.rineng.2024.102411.

Articles similaires

Vous pouvez également Lancer une recherche avancée de similarité pour cet article.