Cartographie de la Vulnérabilité des eaux souterraines du bassin versant de Lukunga dans la ville de Kinshasa

Auteurs

  • Juvenal Matungila Ecole Régionale de l’Eau (ERE) & Centre de Recherche en Ressources en Eau du Bassin du Congo (CRREBaC), Université de Kinshasa (UNIKIN), RD Congo Auteur
  • Djoudar Hallal Dahbia Ecole Nationale Supérieure d’Hydraulique (ENSH), Blida Algérie Auteur
  • Fils Makanzu Centre de Recherches Géologiques et Minières Auteur
  • N’zau Umba-di-Mbudi Ecole Nationale Supérieure d’Hydraulique (ENSH), Blida Algérie Auteur

DOI :

https://doi.org/10.59228/rcst.026.v5.i1.221

Mots-clés :

Lukunga, Vulnérabilité, Cartographie, Eau souterraine, Bassin versant

Résumé

La prolifération des forages d’eau dans la ville de Kinshasa est consécutive à une desserte déficitaire de la distribution d’eau potable du fournisseur principal de cette ressource naturelle. Elle constitue un enjeu majeur de gestion rationnelle des eaux souterraines et des risques sanitaires liés à la pollution des aquifères. Ces questions revêtent d'autant plus d'importance que l'environnement de la ville est soumis à des contraintes croissantes. Cette étude avait pour objectif de cartographier la Vulnérabilité des eaux souterraines en utilisant la méthode GOD et d’évaluer les risques sanitaires liés aux carences en éléments essentiels (Calcium et Magnésium) dans les eaux souterraines du Bassin versant de Lukunga par le calcul du Quotient de Risque sanitaire journalier (HQ) dû aux éléments déficients. Les résultats des analyses physico-chimiques, basés sur 23 échantillons d’eau collectés pendant une campagne sur terrain en septembre 2023, ont permis de valider la cartographie établie sur la base des indices de vulnérabilité à la pollution des aquifères. Il a été observé une forte vulnérabilité dans les parties basses du bassin versant et le long des principaux cours d'eau (Lukunga et Binza) dans la partie Nord-Ouest. Cinq classes de vulnérabilité ont été identifiées : "Très Faible", "Faible", "Moyenne", "Forte" et "Très Forte", couvrant respectivement 12,85 % ; 24,82 % ; 15,86 % ; 16,93 % et 29,54 % de la surface totale du bassin versant. La principale source de pollution identifiée est d'origine domestique, en raison de la décharge sauvage pratiquée par la population, liée à l'absence quasi totale d’un bon système d'assainissement urbain. Cependant, un risque plus immédiat que celui de la pollution menace la santé de la population du bassin versant de Lukunga à savoir un apport déficient en éléments essentiels. Les résultats de cette étude sont destinés à servir de directives techniques pour préserver le potentiel des eaux souterraines dans la ville de Kinshasa.

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Références

African Water Facility. (2015). Elaboration du schéma directeur pour la gestion intégrée des eaux urbaines (GIEU) de la ville de Kinshasa et étude de faisabilité de la desserte en eau potable de Kinshasa Ouest (Rapport d’évaluation).

Afrifa, G. Y., Ansah Narh, T., Ibrahim, K., Loh, Y. S. A., Sakyi, P. A., Chegbeleh, L. P., & Yidana, S. M. (2023). A Monte Carlo simulation approach for the assessment of health risk from NO₃⁻ N perturbation in groundwater. Modeling Earth Systems and Environment. https://doi.org/10.1007/s40808-023-01753-y

Aller, L., Bennett, T., Lehr, J. H., Petty, R. J., & Hackett, G. (1987). DRASTIC: A standardized method for evaluating ground water pollution potential using hydrogeologic settings (EPA/600/2-87/035). U.S. Environmental Protection Agency.

Arredondo, M., González, M., & Latorre, M. (2018). Copper. In M. Malavolta & E. Mocchegiani (Eds.), Trace elements and minerals in health and longevity (Vol. 8, pp. 35–62). Springer.

ayman, M. P. (2012). Selenium and human health. The Lancet, 379(9822), 1256–1268. https://doi.org/10.1016/S0140-6736(11)61338-0

Baazi Houria & Drifi Naima. (2023). Assessment of groundwater vulnerability using GOD method. International Journal of Innovative Studies in Sociology and Humanities, 8(1), 185–189. https://doi.org/10.20431/2456-4931.080119

Catling, L. A., Abubakar, I., Lake, I. R., Swift, L., & Hunter, P. R. (2008). A systematic review of analytical observational studies investigating the association between cardiovascular disease and drinking water hardness. Journal of Water and Health, 6(4), 433–442.

Chenini, I., Zghibi, A., & Kouzana, L. (2015). Hydrogeological investigations and groundwater vulnerability assessment and mapping for groundwater resource protection and management: State of the art and a case study. Journal of African Earth Sciences, 109, 11–26. https://doi.org/10.1016/j.jafrearsci.2015.05.008

Craig, L., Lutz, A., Berry, K. A., & Yang, W. (2015). Recommendations for fluoride limits in drinking water based on estimated daily fluoride intake in the Upper East Region, Ghana. Science of the Total Environment, 532, 127–137. https://doi.org/10.1016/j.scitotenv.2015.05.126

Ducommun, R., Zwahlen, F., Perrochet, P., Dassargues, A., & Mudry, J. (2010). Estimation et cartographie de la vulnérabilité des eaux souterraines en milieu urbain [Doctoral thesis]. Université de Neuchâtel. https://doc.rero.ch/record/20356/files/00002157.pdf

Egbi, D. C., Anornu, G. K., Ganyaglo, Y. S., Appiah-Adjei, K. E., Li, S.-L., & Dampare, B. S. (2020). Nitrate contamination of groundwater in the Lower Volta River Basin of Ghana: Sources and related human health risks. Ecotoxicology and Environmental Safety, 191, 110227. https://doi.org/10.1016/j.ecoenv.2020.110227

Foster, S. S. D. (2000). Assessing and controlling the impacts of agriculture on groundwater from barley barons to beef bans. British Geological Survey.

Foster, S. S. D., & Hirata, R. (1987). Groundwater pollution risk assessment: A methodology using available data. WHO-PAHO-CEPIS Technical Report.

Foster, S. S. D., & Hirata, R. C. A. (1987). Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. In W. Duijvenbooden & H. G. Waegeningh (Eds.), Vulnerability of soil and groundwater to pollutants (pp. 69–86). TNO Committee on Hydrological Research.

Foster, S. S. D., Hirata, R., Gomes, D., & D'Elia, M. (Eds.). (2002). Groundwater quality protection: A guide for water utilities, municipal authorities and environmental agencies. The World Bank.

Gianfredi, V., Bragazzi, N. L., Nucci, D., Villarini, M, & Moretti, M. (2017). Cardiovascular diseases and hard drinking waters: Implications from a systematic review with meta-analysis of case-control studies. Journal of Water and Health, 15(1), 31–40.

Hamza, M. H., Added, A., Francés, A., & R. R. (2007). Validité de l’application des méthodes de vulnérabilité DRASTIC, SINTACS et SI à l’étude de la pollution par les nitrates dans la nappe phréatique de Metline–Ras Jebel–Raf Raf (Nord-Est tunisien). Géosciences de surface (Hydrologie–Hydrogéologie), 339(4), 493–505. https://doi.org/10.1016/j.jafrearsci.2015.05.008

Holenu Mangenda Holy. (2016). L’organisation de l’espace urbain de Kinshasa (RD Congo) face à l’omniprésence des décharges d’ordures. Essai d’aménagement écologique urbain [Doctoral dissertation]. Université de Kinshasa.

Hölting, B., Böttcher, J., & Schräder, H. J. (1995). Grundwasser und Umwelt: Hydrogeologie. Springer-Verlag.

Huan, H., Wang, J., & Teng, Y. (2012). Assessment and validation of groundwater vulnerability to nitrate based on a modified DRASTIC model: A case study in Jilin City of northeast China. Science of the Total Environment, 440, 14–23. https://doi.org/10.1016/j.scitotenv.2012.08.037

Jiang, L., Lui, P., Chen, J., Liu, Y., Liu, D., Qin, G., & Tan, N. (2016). Niveaux de magnésium dans l'eau potable et risque de mortalité par maladie coronarienne : Une méta-analyse. Nutrients, 8(1), 5. https://doi.org/10.3390/nu8010005

Ju, Y., Mahlknecht, J., Lee, K., & Kaown, D. (2022). Bayesian approach for simultaneous recognition of contaminant sources in groundwater and surface-water resources. Current Opinion in Environmental Science & Health, 25, 100321. https://doi.org/10.1016/j.coesh.2021.100321

Katalayi, M. H. (2015). Urbanisation et fabrique urbaine à Kinshasa : Défis et opportunités d’aménagement [Thèse de doctorat]. Université Michel de Montaigne - Bordeaux III. https://thesespublications.bordeaux3.fr/id/eprint/1148

Kousa, A., Havulinna, A. S., Moltchanova, E., Taskinen, O., Nikkarinen, M., Eriksson, J., & Karvonen, M. (2006). Calcium, magnesium ratio in local groundwater and incidence of acute myocardial infarction among males in rural Finland. Environmental Health Perspectives, 114(5), 730–734. https://doi.org/10.1289/ehp.8438

Lateef, A. S. A., Fernandez-Alonso, M., Tack, L., & Delvaux, D. (2010). Geological constraints on urban sustainability, Kinshasa City, Democratic Republic of Congo. Environmental Geosciences, 17(1), 17–35.

Latifi, S. (2018). Étude de la vulnérabilité des nappes aquifères de la région de Guelma et évaluation du rôle des STEP dans la protection des eaux [Thèse de doctorat]. Université Badji Mokhtar-Annaba. 159 p.

Lelo, N. (2008). Kinshasa, ville et environnement. L’Harmattan.

Lelo, N. (2011). Kinshasa, planification et aménagement. L’Harmattan.

Machiwal, D., & Jha, M. K. (2012). Hydrologic time series analysis: Theory and practice. Springer.

Machiwal, D., Jha, M. K., Singh, V. P., & Mohan, C. (2018). Assessment and mapping of groundwater vulnerability to pollution: Status and challenges. Earth-Science Reviews, 185, 901–927. https://doi.org/10.1016/j.earscirev.2018.03.002

Makanzu, I. F., Dewitte, O., Ntombi, M., & Moeyersons, J. (2014). Topographic and road control of mega-gullies in Kinshasa (DR Congo). Geomorphology, 217, 131–139.

Maksimović, Z., Ršumović, M., & Djordjević, M. (2010). Magnesium and calcium in drinking water in relation to cardiovascular mortality in Serbia. Bulletin of the Technical-Cultural Academy of Serbian Science and Arts, 46(1), 131–140.

Margat, J. (1968). Vulnérabilité des nappes d’eau souterraine à la pollution (Groundwater Vulnerability to Contamination). Bases de la cartographie (Doc.) 68 SGC 198HYD. BRGM, Orleans.

Mendoza, G. F., & Barmen, G. (2006). Groundwater vulnerability assessment in developing countries: A review. Hydrogeology Journal, 14(4), 615–629. https://doi.org/10.1007/s10040-005-0454-0

Mfumu, K. A. (2016). Assessing nitrate pollution in the Kinshasa groundwater system using a hybrid approach [Thèse de doctorat Université Catholique de Louvain]. http://hdl.handle.net/2078.1/182148

Mfumu, K. A., Vanclooster, M., & Ndembo, L. J. (2017). Assessing groundwater vulnerability in the Kinshasa region, DR Congo, using a calibrated DRASTIC model. Journal of African Sciences, 126, 13–22. https://doi.org/10.1016/j.afjes.2017.01.001

Moges, S. S., & Dinka, M. O. (2021). Assessment of groundwater vulnerability using the DRASTIC model: A case study of Quaternary catchment A21C, Limpopo River Basin, South Africa. Journal of Water and Land Development, 49(IV–VI), 35–46. https://doi.org/10.24425/jwld.2021.137094

Mulowayi, M. C., Alexander, A., Nobert, J., & Mbudi, C. N. U. D. (2021). Modeling groundwater flow under chaotic urbanization constraints in Kinshasa Capital Region (D.R. Congo). Physics and Chemistry of the Earth, Parts A, B, & C, 123, 102985. https://doi.org/10.1016/j.pce.2021.102985

Murat, V., Paradis, D., Savard, M. M., Nastev, M., Bourque, É., Hamel, A., Lefebvre, R., & Martel, R. (2003). Vulnérabilité à la nappe des aquifères fracturés du sud-ouest du Québec : Évaluation par les méthodes DRASTIC et GOD. Géographie physique et Quaternaire, 57(2), 67–77.

Ndembo, J. (2009). Apport des outils hydrogéochimiques et isotopiques à la gestion de l’aquifère du Mont-Amba [Thèse]. Université d’Avignon.

Nerbrand, C., Agréus, L., Lenner, R. A., Nyberg, P., & Svärdsudd, K. (2003). The influence of calcium and magnesium in drinking water and diet on cardiovascular risk factors in individuals living in hard and soft areas with differences in cardiovascular mortality. BMC Public Health, 3(1), 1–9. https://doi.org/10.1186/1471-2458-3-15

Ntombi, M. K., & Makanzu, I. F. (2006). Réponse du bilan hydrométrique à la dégradation spécifique du bassin versant de Lukunga à Kinshasa. Annales de la faculté des Sciences, Université de Kinshasa, 1, 67–77.

OMS. (2017). Directives de qualité pour l’eau de boisson (4e éd. Incorporant le 1er addendum). Organisation mondiale de la Santé.

Panagopoulos, G. P., Antonakos, A. K., & Lambrakis, N. J. (2006). Optimization of the DRASTIC method for groundwater vulnerability assessment via the use of simple statistical methods. Environmental Monitoring and Assessment, 117(1–3), 243–259. https://doi.org/10.1007/s10661-005-9084-4

Rahman, A. (2008). A GIS-based DRASTIC model for assessing groundwater vulnerability in shallow aquifer systems. Environmental Modelling & Software, 23(9), 1129–1137. https://doi.org/10.1016/j.envsoft.2008.02.003

Rapant, S., Cvečková, V., Fajčíková, K., Sedláková, D., & Stehlíková, B. (2017). Impact of calcium and magnesium in groundwater and drinking water on the health of inhabitants of the Slovak Republic. International Journal of Environmental Research and Public Health, 14(3), 278. https://doi.org/10.3390/ijerph14030278

Rapant, S., Cvečková, V., Hiller, E., Jurkovičová, D., Kožíšek, F., & Stehlíková, B. (2020). Proposal of new health risk assessment method for deficient essential elements in drinking water—Case study of the Slovak Republic. International Journal of Environmental Research and Public Health, 17(16), 5915. https://doi.org/10.3390/ijerph17165915

Rosborg, I., & Kožíšek, F. (2020). Drinking water mineral and balance: Importance, health significance, safety precautions (2nd ed.). Springer.

Rosborg, I., Nihlgård, B., & Ferrante, M. (2015). Mineral composition of drinking water and daily uptake. In I. Rosborg & F. Kožíšek (Eds.), Drinking water minerals and mineral balance (pp. 25–31). Springer. https://doi.org/10.1007/978-3-319-09593-6_2

Rosenlund, M., Berglind, N., Hallqvist, J., Bellander, T., & Bluhm, G. (2005). Daily intake of magnesium and calcium from drinking water in relation to myocardial infarction. Epidemiology, 16(4), 570–576. https://doi.org/10.1097/01.ede.0000167628.32131.0a

Rubenowitz, E. (1999). Magnesium in drinking water and death from acute myocardial infarction. American Journal of Epidemiology, 149(5), 456–462. https://doi.org/10.1093/oxfordjournals.aje.a008765

Rubenowitz, E., Gösta, A., & Rylander, R. (1996). Magnesium in drinking water and death from acute myocardial infarction. American Journal of Epidemiology, 143(5), 456–462. https://doi.org/10.1093/oxfordjournals.aje.a008765

Rukmana, B. T. S., Bargawa, W. S., & Cahyadi, T. A. (2020). Assessment of groundwater vulnerability using GOD method. IOP Conference Series: Earth and Environmental Science, 477(1), 012020. https://doi.org/10.1088/1755-1315/477/1/012020

Rylander, R., Bonevik, H., & Rubenowitz, E. (1991). Magnesium and calcium in drinking water and cardiovascular mortality. Scandinavian Journal of Work, Environment & Health, 17(2), 91–94.

Schwarz, E. C., Qu, B., & Hoth, M. (2013). Calcium, cancer and killing: The role of calcium in killing cancer cells by cytotoxic T lymphocytes and natural killer cells. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1833(8), 1603–1611. https://doi.org/10.1016/j.bbamem.2013.03.006

Sulmon, C., Gouesbet, G., El Amrani, A., & Couée, I. (2006). Environmental signal interactions and plant responses to xenobiotics: The case of the polycyclic aromatic hydrocarbon fluoranthene. Journal of Experimental Botany, 57(3), 449–460. https://doi.org/10.1093/jxb/erj011

Tam, M., Gómez, S., & González-Gross, M. (2003). Possible roles of magnesium on the immune system. European Journal of Clinical Nutrition, 57(10), 1193–1197. https://doi.org/10.1038/sj.ejcn.1601689

Tiktak, A., de Nie, D. S., Piñeros Garcet, J. D., Jones, A., & Vanclooster, M. (2004). Assessment of the pesticide leaching risk at the Pan-European level: The EuroPEARL approach. Journal of Hydrology, 289(1–4), 0–238. https://doi.org/10.1016/j.jhydrol.2003.11.030

US EPA. (1989a). Risk assessment guidance for Superfund (RAGS), Volume I: Human health evaluation manual (HHEM), Part A—Baseline risk assessment (EPA/540/1-89/002). United States Environmental Protection Agency. (Lieu de publication à préciser)

US EPA. (1989b). Exposure factors handbook (EPA/600/8-89/43). Office of Health and Environmental Assessment.

US EPA. (1997). Exposure factors handbook I, II, III (EPA/600/P-95/002F). United States Environmental Protection Agency.

US EPA. (2004). Risk assessment guidance for Superfund (RAGS), Volume I: Human health evaluation manual (RAGS), Part E—Supplemental guidance for dermal risk assessment (Final). EPA. https://www.epa.gov/risk/risk-guidance-superfund-rags

US EPA. (2005). Guidelines for carcinogen risk assessment (EPA/630/P-03/001F). EPA. https://www.epa.gov/risk/guidelines-carcinogen-risk-assessment

US EPA. (2008). Child-specific exposure factors handbook (EPA/600/R-06/096F). EPA. https://www.epa.gov/expobox/child-specific-exposure-factors-handbook

US EPA. (2009). Risk assessment guidance for Superfund (RAGS), Volume I: Human health evaluation manual (HHEM), Part F—Supplemental guidance for inhalation risk assessment (Final) (EPA-540-R-07-002). EPA. https://www.epa.gov/risk/risk-guidance-superfund-rags

Van Caillie, X. (1976–1988). La carte géographique et géotechnique de Kinshasa à l’échelle du 1/20.000. Bureau d’Etudes d’Aménagements Urbains, Kinshasa.

Van Caillie, X. (1983). Hydrologie et érosion dans la région de Kinshasa : Analyse des interactions entre les conditions du milieu, les érosions et le bilan hydrologique (Thèse de doctorat). Laboratoire de Géomorphologie Expérimentale, Département de Géographie-Géologie, KUL, Leuven, Belgique, 553 p.

Van Caillie, X. (1997). La carte des pentes (1/20 000) de la région des collines à Kinshasa. Bulletin n°17, Réseau Erosion, ORSTOM, 198–204.

Vuni, S. A., Kisangala, M. M., Puela, P. F., Lelo, N. F., Koy, K. R., Aloni, K. J., Malaisse, F., & Nzau, U. D. M. C. (2022). River contract and the resilience of the population in the face of poor environmental management and the risk of flooding in the Kalamu watershed in the City of Boma (Central Kongo, DR Congo). Geo-Eco-Trop, 46(2), 203–216.

Yang, C. Y., & Chiu, H. F. (1999). Calcium and magnesium in drinking water and the risk of death from hypertension. American Journal of Hypertension, 12(9), 894–899.

Yang, C. Y., Chang, C. C., Tsai, S. S., & Chiu, H. F. (2006). Calcium and magnesium in drinking water and risk of death from acute myocardial infarction in Taiwan. Environmental Research, 101(3), 407–411. https://doi.org/10.1016/j.envres.2005.12.019

Yang, C. Y., Cheng, M. F., Tsai, S. S., & Hsieh, Y. L. (2000). Calcium, magnesium, and nitrate in drinking water and gastric cancer mortality. Japanese Journal of Cancer Research, 91(2), 124–130.

Yang, C. Y., Chiu, H. F., Chiu, J. F., Wang, T. N., & Cheng, M. F. (1997). Magnesium and calcium in drinking water and cerebrovascular mortality in Taiwan. Magnesium Research, 10(2), 51–57.

Zwahlen, F. (2004). Vulnerability and risk mapping for the protection of carbonate (karst) aquifers. Hydrogeology Journal. https://doi.org/10.1007/s10040-005-0008-x

Téléchargements

Publiée

23-01-2026

Articles similaires

1-10 sur 56

Vous pouvez également Lancer une recherche avancée de similarité pour cet article.