Effect of acid activation on adsorption properties of some clay materials from South-East of the Democratic Republic of Congo

Main Article Content

Léon Zeka
Christian Bahwa Kushi
Francine Manene
Sony Tshiyuka
Augustin Ilunga Ndala
Jean Frenay

Abstract

The effect of acid activation of some clay materials in the South-East of the Democratic Republic of Congo was studied, in 
the interest of considering the substitution of imported clays as adsorbents. Depending on abundance, type of supporting soil
and accessibility in this region, six clay materials were chosen including two taken from the montmorillonite-rich soils 
(Malambwe and Kasenga), one from the kaolinite-rich soil (Kazembe) and three others (Lufira, Kalubwe, and Kyowelo) taken 
from soils with equivalent proportions of montmorillonite and kaolinite. Acid concentration, time, temperature and 
impregnation ratio were studied during activation for which the effect was evaluated by the cation exchange capacity (CEC) 
after contact with a solution of methylene blue as adsorbate. The results showed that activation did not significantly improve 
the adsorbent power with increases in CEC which barely exceeded 30% with the exception of the Kazembe sample which 
gave an increase of 50%. Clay materials can therefore be used without prior activation and remain competitive in this case the 
samples rich in montmorillonite which gave the best CEC values of 110 mmol/100g for Malambwe and 82 mmol/100g for 
Kasenga, the others having values less than 73 mmol/100g. However, these performances remain slightly lower than those of 
imported clays which gave 143 and 119 mmol/100g respectively for Bentonite and Tonsil

Article Details

Section
Articles

References

Adams, J. M., & McCabe, R. W. (2006). Clay

Minerals as Catalysts. In F. Bergaya, B.K.G.

Theng, & G. Lagaly (Eds.), Developments in Clay Science, (pp. 541‑ 581). Amsterdam,

Elsevier. https://doi.org/10.1016/S1572-

(05)01017-2

Al Kausor, M., Sen Gupta, S., Bhattacharyya, K. G.,

& Chakrabortty, D. (2022). Montmorillonite

and modified montmorillonite as adsorbents for

removal of water soluble organic dyes : A

review on current status of the art. Inorganic

Chemistry Communications, 143, 109686.

https://doi.org/10.1016/j.inoche.2022.109686

Amari, A., Gannouni, H., Khan, M., Almesfer, M.,

Elkhaleefa, A., & Gannouni, A. (2018). Effect

of Structure and Chemical Activation on the

Adsorption Properties of Green Clay Minerals

for the Removal of Cationic Dye. Applied

Sciences, 8(11), 2302.

https://doi.org/10.3390/app8112302

Bahwa, C. & Zeka, L. (2023). Localisation des sites

d’échantillonnage de différentes argiles

étudiées (Haut-Katanga: KAS, MAL, KAL et

LUF ; Lualaba : KAZ et KYO) [Carte].

Babaki H., Salem A., Jafarizad A. (2008). Kinetic

model for the isothermal activation of bentonite

by sulfuric acid. Mater. Chem. Phys., 108, 263–

Berez, A. (2015). Dépollution par l’argile naturelle

d’effluents teinturiers : Étude expérimentale et

modélisation du processus d’adsorption /

désorption en réacteur fermé et colonne de

percolation [Thèse de Doctorat, Université de

Strasbourg].

Clauer, N. (2005, avril). Les minéraux argileux : Leur

rôle et importance dans un site de stockage de

déchets radioactifs en couche argileuse

profonde. L’actualité chimique, 285.

Crundwell, F. K., du Preez, N. B., & Knights, B. D.

H. (2020). Production of cobalt from coppercobalt ores on the African Copperbelt – An

overview. Minerals Engineering, 156, 106450.

https://doi.org/10.1016/j.mineng.2020.106450

Dudley, K., Virnig, M., Crane, P., & Hein, H. (2006).

Clay Treatment for Copper Solvent Extraction

Circuits [Communication]. Alta Conference,

Australie.

España, V. A. A., Sarkar, B., Biswas, B., Rusmin, R.,

& Naidu, R. (2019). Environmental

applications of thermally modified and acid

activated clay minerals : Current status of the

art. Environmental Technology & Innovation,

, 383‑ 397.

Fernandes, C., Catrinescu C., Castilho P., Russo P.A.,

Carrott M.R., Breen C., (2007). Catalytic

conversion of limonene over acid activated

Serra de Dentro (SD) bentonite, Appl. Catalysis

A: Gen. 318 ,108–

https://doi.org/10.1016/j.eti.2016.11.005

Gannouni, A. & Bellagi, A. (2001). Activation acide

de quelques argiles du sud tunisien I.

Préparation de terres décolorantes pour huiles

végétales. Journal de la société chimique de

Tunisie, 4(10) 1357-1368.

Hussin, F., Aroua, M. K., & Daud, W. M. A. W.

(2011). Textural characteristics, surface

chemistry and activation of bleaching earth : A

review. Chemical Engineering Journal, 170(1),

‑ 106.https://doi.org/10.1016/j.cej.2011.03.0

Hutzler, B., Cole, P., Thomas, L., Bednarski, T., &

Zambra, R. (2015). Clay Treatment

Improvements Using ACORGA® CB1000 Clay

Binder [Communication]. Southern African

Institute of Mining and Metallurgy, Copper

Cobalt Africa 8th Base Metal Conference,

Joannesbourg.

Kabumana, D. T., Twite, E., Twite, P., Kanyembo,

A., & Lubamba, J. (2020). Evaluation of the

performance of a local acid activated clay on

the decontamination of solvent extraction plant

organic. Journal of Applied Chemistry, 13(5),

‑ 53.

Kaviratna, H., & Pinnavaia, T.J. (1994). Acid

hydrolysis of octahedral Mg2+ sites in 2:1

layered silicates: an assessment of edge attack

and gallery access mechanisms. Clays Clay

Miner., 42, 717–723.

Khan, W. S., Asmatulu, E., Uddin, Md. N., &

Asmatulu, R. (2022). Recycling and reusing of

used lubricating oils. In W.S. Khan, E.

Asmatutu, M. Uddin & R. Asmatulu (Eds.),

Recycling and Reusing of Engineering

Materials (p. 213‑ 232). Amsterdam, Elsevier.

https://doi.org/10.1016/B978-0-12-822461-

00010-3

Koller, E. (2010). Aide-mémoire Génie chimique (3è

éd). Paris, Dunod.

Konrad, J.-M., & Gabezas, F. A. V. (2008).

Caractérisation des particules fines d’un

matériau granulaire de fondation par l’essai au

bleu de méthylène [Rapport de recherche,

Université Laval].

Madejová J., Bujdák J., Janek M., Komadel P.

(1998). Comparative FT-IR study of structural

modifications during acid treatment of

dioctahedral smectites and hectorite,

Spectrochim. Molecular and Biomolecular

Spectroscopy, 54, 1397-1406.

https://doi.org/10.1016/S1386-1425(98)00040-

Mukherjee, S., & Ghosh, B. (2013). The science of

clays : Applications in industry, engineering

and environment. Dordrecht, Springer.

Ngongo, M. L., Van Ranst, Baert, G., Kasongo, E.,

Verdoodt, A., Mujinya, B., & Mukalay, J.

(2009a). Guide des sols en République Démocratique du Congo. Tome I: étude et

gestion (Vol. 1). Lubumbashi, Don Bosco.

Ngongo, M. L., Van Ranst, Baert, G., Kasongo, E.,

Verdoodt, A., Mujinya, B., & Mukalay, J.

(2009b). Guide des sols en République

Démocratique du Congo. Tome II: description

et données physicochimiques (Vol. 1).

Lubumbashi, Don Bosco

Shengo, M. L., Kime, M.-B., Mambwe, M. P., &

Nyembo, T. K. (2019). A review of the

beneficiation of copper-cobalt-bearing minerals

in the Democratic Republic of Congo. Journal

of Sustainable Mining, 18(4), 226‑ 246.

https://doi.org/10.1016/j.jsm.2019.08.001

Srasra, E. (2002). Argile et acidité. Mécanisme de

l’activation acide et propriétés résultantes

[Thèse de Doctorat, Univesrité de Tunis].

Sole, K. C. (2016). Copper solvent extraction : Status,

operating practices, and challenges in the

African Copperbelt. Journal of the Southern

African Institute of Mining and Metallurgy,

(6), 553‑ 560.

https://doi.org/10.17159/2411-

/2016/v116n6a10

Valenzuela-Diaz F.R., Souza-Santos P. (2001).

Studies on the acid activation of Brazilian

smectite clays. Quim. Nova., 24,345–353.

Vernhet, A. (2019). Red Wine Clarification and

Stabilization. In A. Morata (Ed), Red Wine

Technology (p.237‑ 251). Amsterdam,

Elsevier. https://doi.org/10.1016/B978-0-12-

-5.00016-5

Wetshondo, D. (2012). Caractérisation et

valorisation des matériaux argileux de la

Province de Kinshasa (RD Congo) [Thèse de

Doctorat, Université de liège].

Wypych, F., & de Freitas, R. A. (2022). Clay

minerals : Classification, structure, and

properties. In F. Wypych & R. A. de Freitas

(Éds.), Developments in Clay Science (Vol. 10,

p. 3‑ 35). Amsterdam, Elsevier.

https://doi.org/10.1016/B978-0-323-91858-

00004-5

Similar Articles

You may also start an advanced similarity search for this article.