Étude de l'adsorption des ions de Nickel sur des argile

Main Article Content

Zuka Maniania B
Muntumosi Senzedi M
Mbungu Tsumbu J. P
Mulaba Bafubiandi A
Mbonsei Lobota A
Lofutu Bolemole G
Bopili Mbotia Lepiba R

Abstract

This research focuses on the treatment of hydrometallurgical effluents, specifically studying the adsorption of
metallic ions such as Nickel, Copper, Cobalt, Mercury, and lead on natural clays from the Democratic Republic
of Congo (DRC). Twelve clay samples, six activated with a strong acid and six non-activated, were characterized
using various techniques including X-Ray Diffraction, Fourier Transform Infrared Spectroscopy, X-Ray
Fluorescence, Transmission Electron Microscopy, and chemical dosage. The characterization revealed that the
clays are mixed with several clayey minerals, enriched in aluminum silicate; contain absorption and water
retention sites, and exhibit heterogeneities at the interfaces between grains and exchangeable ions. Activating the
clays increased their cation exchange capacities, removed impurities, and increased pore size and specific area.
Two aqueous solutions were used in the experiments: a laboratory-prepared nickel sulfate solution and a
hydrometallurgical aqueous solution from a factory, both initially containing 15 mgL-1
of Ni2+ ions. Results
showed that the adsorption of Ni2+ ions increased with the quantity of clay in the solution. The activated clays
adsorbed more ions than non-activated clays at the same Ni2+ ion concentration. Additionally, adsorption was
weaker in the hydrometallurgical solution compared to the nickel sulfate solution, suggesting competition from
other metallic ions. The optimal adsorption occurred with chemically activated clays containing high Na+
, Fe2+
,
and Al3+ ion content and low K+
ion content. The Hill-Langmuir model was used to describe the adsorption
results, revealing that minimal quantities of activated clay were needed to adsorb a large quantity of Ni2+ ions in
the solution, whereas large quantities of non-activated clays were insufficient. In conclusion, the research
demonstrates the potential of natural clays from the DRC to adsorb metallic ions from hydrometallurgical
effluents, providing insights for effective treatment methods in the future. The model revealed that the clay
samples A2a clay, A6a and A3na have the very elevated reactional sites concentrations.

Article Details

Section
Articles

References

Bhattacharyya, Krishna, G. & Gupta, S. (2008).

Kaolinite, montmorillonite, and their

modified, derivatives as adsorbents for

removal of Cu (II) from aqueous solution.

Separation and Purification Technology. 50,

-397.

Bouras, O. (2003). Propriétés adsorbantes d’argiles

pontées organophiles synthèse et

caractérisation [Thèse de Doctorat, Université

de Limoges].

Brinkmann. (1970). Ferrolysis, a hydromorpic soil

forming process. Geoderma. 3, 199-206.

Dau, J. & Lagaly, G. (1998). Surface modification of

bentonite. II. Modification of Montmorillonite

with Cationic Poly (ethylene oxides).

CCACAA71. 4, 983-1004.

Elfil, H., Srasra, E. & Dogguy. (1995).

Caractérisation physico-chimique de certaines

argiles utilisées dans l’industrie céramique.

Journal of Thermal Analysis, 44, 663-683.

Espiau, P. & Pedio, G. (2010). Etude du phénomène

de ferrolyse par voie expérimentale :

production d’acidité d’échange et mise en

évidence du rôle catalytique des minéraux

argileux. Association française pour l’étude

du sol.

Gaombale, J. (2004). Le gonflement des argiles et ses

effets sur les ouvrages souterrains de stockage

[Thèse de Doctorat, École polytechnique].

Gesztely, R., Zsuga, J., Kemeny, A., Varga, B.,

Juhasz, B., & Arpad, T. (2012). The Hill

equation and the origin of quantitative

pharmacology, Arch. Hist. Exact Sci. (2012)

:427–438; DOI 10.1007/s00407-012-0098-5

Ghorbel, I., Jrad, A., Nahdi, K. & Trabelsi, M.

(2009). Sorption of chromium (III) from

aqueous solution using bentonite clay.

Desalination. 246, 595-604.

Jancovic, L. & Komadel P., (2003). Les argiles

cationiques. Catal J., 15, 218-227.

Morel, R. (1996). Les sols cultivés. Paris, Edit

Lavoisier.Morgan, H., Preston, M. & Nestor, W. (1975).

General model for nutritional responses of

higher organisms (bioassay/saturation

kinetics/growth responses).

Muntumosi, M., Mbungu, JP., Phuku, E. & Bopili, R.

(2019). Etude des mélanges d'huiles pour le

traitement des thermoplastiques : cas du

polyéthylène. International Journal of

Innovation and Scientific Research.

Narushin, V.G. & Takma, C. (2003). Sigmoid Model

for the Evaluation of Growth and Production

Curves in Laying Hens, Biosystems

Engineering 84 (3), 343–348

doi:10.1016/S1537-5110(02)00286-6).

Rinnert, E., (2004). Etude d’hydratation d’argiles

suivies par analyses vibrationnelles de l’eau

et des hydroxyles dans le proche infrarouge :

application aux systèmes saponite et bentonite

[Thèse de Doctorat, Université Henri

Poincaré, 2004].

Seghairi, N., Koussa, M. & Achour, S. (2004). Effet

de l’activité chimique de la bentonite sur

l’absorption de substances humiques en eaux

de minéralisation variable. Larhyss Journal, 3,

-102.

Soumaya, B. N., Trabelsi, M. & Hedi, M. F. (2009).

Activation d’une argile smectite tunisienne à

l’acide sulfurique : rôle catalytique de l’acide

adsorbé par l’argile. Journal de la Société

Chimique de Tunisie.11, 203-191.

Zhang, Y. & Cremer, P.S. (2006). Interactions

between macromolecules and ions: The

Hofmeister series. Current Opinion in

Chemical Biology. 6, 658–663.

Zuka, B. (2016). Etude de l’adsorption des ions

sur un système composite argilepolymère destiné au traitement des effluents

hydrométallurgiques [Thèse de doctorat,

Université de Kinshasa RDC].

Zuka, B., Mbungu, J.P. & Mulaba A., (2013).

Characterization of a clay-polymer composite

using the infrared spectroscopy. International

conference on chemical and environmental

engineering (ICCEE 2013) for Planetary

Scientific Research Centre Conference, April

-16, 2013, Johannesburg, South Africa

(SA).

Similar Articles

You may also start an advanced similarity search for this article.