Étude de l'adsorption des ions de Nickel sur des argile
Main Article Content
Abstract
This research focuses on the treatment of hydrometallurgical effluents, specifically studying the adsorption of
metallic ions such as Nickel, Copper, Cobalt, Mercury, and lead on natural clays from the Democratic Republic
of Congo (DRC). Twelve clay samples, six activated with a strong acid and six non-activated, were characterized
using various techniques including X-Ray Diffraction, Fourier Transform Infrared Spectroscopy, X-Ray
Fluorescence, Transmission Electron Microscopy, and chemical dosage. The characterization revealed that the
clays are mixed with several clayey minerals, enriched in aluminum silicate; contain absorption and water
retention sites, and exhibit heterogeneities at the interfaces between grains and exchangeable ions. Activating the
clays increased their cation exchange capacities, removed impurities, and increased pore size and specific area.
Two aqueous solutions were used in the experiments: a laboratory-prepared nickel sulfate solution and a
hydrometallurgical aqueous solution from a factory, both initially containing 15 mgL-1
of Ni2+ ions. Results
showed that the adsorption of Ni2+ ions increased with the quantity of clay in the solution. The activated clays
adsorbed more ions than non-activated clays at the same Ni2+ ion concentration. Additionally, adsorption was
weaker in the hydrometallurgical solution compared to the nickel sulfate solution, suggesting competition from
other metallic ions. The optimal adsorption occurred with chemically activated clays containing high Na+
, Fe2+
,
and Al3+ ion content and low K+
ion content. The Hill-Langmuir model was used to describe the adsorption
results, revealing that minimal quantities of activated clay were needed to adsorb a large quantity of Ni2+ ions in
the solution, whereas large quantities of non-activated clays were insufficient. In conclusion, the research
demonstrates the potential of natural clays from the DRC to adsorb metallic ions from hydrometallurgical
effluents, providing insights for effective treatment methods in the future. The model revealed that the clay
samples A2a clay, A6a and A3na have the very elevated reactional sites concentrations.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Bhattacharyya, Krishna, G. & Gupta, S. (2008).
Kaolinite, montmorillonite, and their
modified, derivatives as adsorbents for
removal of Cu (II) from aqueous solution.
Separation and Purification Technology. 50,
-397.
Bouras, O. (2003). Propriétés adsorbantes d’argiles
pontées organophiles synthèse et
caractérisation [Thèse de Doctorat, Université
de Limoges].
Brinkmann. (1970). Ferrolysis, a hydromorpic soil
forming process. Geoderma. 3, 199-206.
Dau, J. & Lagaly, G. (1998). Surface modification of
bentonite. II. Modification of Montmorillonite
with Cationic Poly (ethylene oxides).
CCACAA71. 4, 983-1004.
Elfil, H., Srasra, E. & Dogguy. (1995).
Caractérisation physico-chimique de certaines
argiles utilisées dans l’industrie céramique.
Journal of Thermal Analysis, 44, 663-683.
Espiau, P. & Pedio, G. (2010). Etude du phénomène
de ferrolyse par voie expérimentale :
production d’acidité d’échange et mise en
évidence du rôle catalytique des minéraux
argileux. Association française pour l’étude
du sol.
Gaombale, J. (2004). Le gonflement des argiles et ses
effets sur les ouvrages souterrains de stockage
[Thèse de Doctorat, École polytechnique].
Gesztely, R., Zsuga, J., Kemeny, A., Varga, B.,
Juhasz, B., & Arpad, T. (2012). The Hill
equation and the origin of quantitative
pharmacology, Arch. Hist. Exact Sci. (2012)
:427–438; DOI 10.1007/s00407-012-0098-5
Ghorbel, I., Jrad, A., Nahdi, K. & Trabelsi, M.
(2009). Sorption of chromium (III) from
aqueous solution using bentonite clay.
Desalination. 246, 595-604.
Jancovic, L. & Komadel P., (2003). Les argiles
cationiques. Catal J., 15, 218-227.
Morel, R. (1996). Les sols cultivés. Paris, Edit
Lavoisier.Morgan, H., Preston, M. & Nestor, W. (1975).
General model for nutritional responses of
higher organisms (bioassay/saturation
kinetics/growth responses).
Muntumosi, M., Mbungu, JP., Phuku, E. & Bopili, R.
(2019). Etude des mélanges d'huiles pour le
traitement des thermoplastiques : cas du
polyéthylène. International Journal of
Innovation and Scientific Research.
Narushin, V.G. & Takma, C. (2003). Sigmoid Model
for the Evaluation of Growth and Production
Curves in Laying Hens, Biosystems
Engineering 84 (3), 343–348
doi:10.1016/S1537-5110(02)00286-6).
Rinnert, E., (2004). Etude d’hydratation d’argiles
suivies par analyses vibrationnelles de l’eau
et des hydroxyles dans le proche infrarouge :
application aux systèmes saponite et bentonite
[Thèse de Doctorat, Université Henri
Poincaré, 2004].
Seghairi, N., Koussa, M. & Achour, S. (2004). Effet
de l’activité chimique de la bentonite sur
l’absorption de substances humiques en eaux
de minéralisation variable. Larhyss Journal, 3,
-102.
Soumaya, B. N., Trabelsi, M. & Hedi, M. F. (2009).
Activation d’une argile smectite tunisienne à
l’acide sulfurique : rôle catalytique de l’acide
adsorbé par l’argile. Journal de la Société
Chimique de Tunisie.11, 203-191.
Zhang, Y. & Cremer, P.S. (2006). Interactions
between macromolecules and ions: The
Hofmeister series. Current Opinion in
Chemical Biology. 6, 658–663.
Zuka, B. (2016). Etude de l’adsorption des ions
sur un système composite argilepolymère destiné au traitement des effluents
hydrométallurgiques [Thèse de doctorat,
Université de Kinshasa RDC].
Zuka, B., Mbungu, J.P. & Mulaba A., (2013).
Characterization of a clay-polymer composite
using the infrared spectroscopy. International
conference on chemical and environmental
engineering (ICCEE 2013) for Planetary
Scientific Research Centre Conference, April
-16, 2013, Johannesburg, South Africa
(SA).