Study of the adsorption of Nickel ions on local natural clays in hydrometallurgical effluents
Main Article Content
Abstract
This research focuses on the treatment of hydrometallurgical effluents, specifically studying the adsorption of metallic ions such as Nickel, Copper, Cobalt, Mercury, and lead on natural clays from the Democratic Republic of Congo (DRC). Twelve clay samples, six activated with a strong acid and six non-activated, were characterized using various techniques including X-Ray Diffraction, Fourier Transform Infrared Spectroscopy, X-Ray Fluorescence, Transmission Electron Microscopy, and chemical dosage. The characterization revealed that the clays are mixed with several clayey minerals, enriched in aluminum silicate; contain absorption and water retention sites, and exhibit heterogeneities at the interfaces between grains and exchangeable ions. Activating the clays increased their cation exchange capacities, removed impurities, and increased pore size and specific area. Two aqueous solutions were used in the experiments: a laboratory-prepared nickel sulfate solution and a hydrometallurgical aqueous solution from a factory, both initially containing 15 mgL-1 of Ni2+ ions. Results showed that the adsorption of Ni2+ ions increased with the quantity of clay in the solution. The activated clays adsorbed more ions than non-activated clays at the same Ni2+ ion concentration. Additionally, adsorption was weaker in the hydrometallurgical solution compared to the nickel sulfate solution, suggesting competition from other metallic ions. The optimal adsorption occurred with chemically activated clays containing high Na+, Fe2+, and Al3+ ion content and low K+ ion content. The Hill-Langmuir model was used to describe the adsorption results, revealing that minimal quantities of activated clay were needed to adsorb a large quantity of Ni2+ ions in the solution, whereas large quantities of non-activated clays were insufficient. In conclusion, the research demonstrates the potential of natural clays from the DRC to adsorb metallic ions from hydrometallurgical effluents, providing insights for effective treatment methods in the future. The model revealed that the clay samples A2a clay, A6a and A3na have the very elevated reactional sites concentrations.
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Bhattacharyya, Krishna, G. & Gupta, S. (2008). Kaolinite, montmorillonite, and their modified, derivatives as adsorbents for removal of Cu (II) from aqueous solution. Separation and Purification Technology. 50, 388-397.
Bouras, O. (2003). Propriétés adsorbantes d’argiles pontées organophiles synthèse et caractérisation [Thèse de Doctorat, Université de Limoges].
Brinkmann. (1970). Ferrolysis, a hydromorpic soil forming process. Geoderma. 3, 199-206.
Dau, J. & Lagaly, G. (1998). Surface modification of bentonite. II. Modification of Montmorillonite with Cationic Poly (ethylene oxides). CCACAA71. 4, 983-1004.
Elfil, H., Srasra, E. & Dogguy. (1995). Caractérisation physico-chimique de certaines argiles utilisées dans l’industrie céramique. Journal of Thermal Analysis, 44, 663-683.
Espiau, P. & Pedio, G. (2010). Etude du phénomène de ferrolyse par voie expérimentale : production d’acidité d’échange et mise en évidence du rôle catalytique des minéraux argileux. Association française pour l’étude du sol.
Gaombale, J. (2004). Le gonflement des argiles et ses effets sur les ouvrages souterrains de stockage [Thèse de Doctorat, École polytechnique].
Gesztely, R., Zsuga, J., Kemeny, A., Varga, B., Juhasz, B., & Arpad, T. (2012). The Hill equation and the origin of quantitative pharmacology, Arch. Hist. Exact Sci. (2012) 66:427–438; DOI 10.1007/s00407-012-0098-5
Ghorbel, I., Jrad, A., Nahdi, K. & Trabelsi, M. (2009). Sorption of chromium (III) from aqueous solution using bentonite clay. Desalination. 246, 595-604.
Jancovic, L. & Komadel P., (2003). Les argiles cationiques. Catal J., 15, 218-227.
Morel, R. (1996). Les sols cultivés. Paris, Edit Lavoisier.
Morgan, H., Preston, M. & Nestor, W. (1975). General model for nutritional responses of higher organisms (bioassay/saturation kinetics/growth responses).
Muntumosi, M., Mbungu, JP., Phuku, E. & Bopili, R. (2019). Etude des mélanges d'huiles pour le traitement des thermoplastiques : cas du polyéthylène. International Journal of Innovation and Scientific Research.
Narushin, V.G. & Takma, C. (2003). Sigmoid Model for the Evaluation of Growth and Production Curves in Laying Hens, Biosystems Engineering 84 (3), 343–348 doi:10.1016/S1537-5110(02)00286-6).
Rinnert, E., (2004). Etude d’hydratation d’argiles suivies par analyses vibrationnelles de l’eau et des hydroxyles dans le proche infrarouge : application aux systèmes saponite et bentonite [Thèse de Doctorat, Université Henri Poincaré, 2004].
Seghairi, N., Koussa, M. & Achour, S. (2004). Effet de l’activité chimique de la bentonite sur l’absorption de substances humiques en eaux de minéralisation variable. Larhyss Journal, 3, 91-102.
Soumaya, B. N., Trabelsi, M. & Hedi, M. F. (2009). Activation d’une argile smectite tunisienne à l’acide sulfurique : rôle catalytique de l’acide adsorbé par l’argile. Journal de la Société Chimique de Tunisie.11, 203-191.
Zhang, Y. & Cremer, P.S. (2006). Interactions between macromolecules and ions: The Hofmeister series. Current Opinion in Chemical Biology. 6, 658–663.
Zuka, B. (2016). Etude de l’adsorption des ions sur un système composite argile-polymère destiné au traitement des effluents hydrométallurgiques [Thèse de doctorat, Université de Kinshasa RDC].
Zuka, B., Mbungu, J.P. & Mulaba A., (2013). Characterization of a clay-polymer composite using the infrared spectroscopy. International conference on chemical and environmental engineering (ICCEE 2013) for Planetary Scientific Research Centre Conference, April 15-16, 2013, Johannesburg, South Africa (SA).