Photodynamic antimicrobial activities and laser flash photolysis studies of meso-tetrakis (2-bromophenyl), meso-tetrakis (3-bromophenyl) and meso-tetrakis (4-bromophenyl) tin porphyrins

Authors

  • Hugues Gambolo Kabeya Département de Chimie, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo Author
  • Godfrey Sebiawu Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa Author
  • Taba Muzele Kalulu Département de Chimie, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo Author
  • Josephine Kankolongo Ntumba Département de Chimie, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo Author
  • Muthumuni Managa Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa Author
  • John Mack Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa Author
  • Tebello Nyokong Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa Author
  • Pitchou Bokolombe Ngoy Département de Chimie, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo Author

DOI:

https://doi.org/10.59228/rcst.026.v5.i1.229

Keywords:

Laser flash photolysis, free base porphyrins, singlet oxygen quantum yield, photophysics

Abstract

The photodynamic antimicrobial activities and laser flash photolysis studies were conducted for meso-tetrakis (2-bromophenyl), meso-tetrakis (3-bromophenyl) and meso-tetrakis (4-bromophenyl) free base porphyrins and their Sn(IV) complexes. It has been shown that Tin Metalated porphyrins have high singlet oxygen quantum yields compare to their respective free bases (0.645, 0.708, 0.732 vs 0.445, 0.585 and 0.412) for 1Sn, 2Sn and 3Sn vs 1, 2 and 3 respectively. The disapearence of Staphylococcus aureus or E. Coli was observed around 2,5 μM. The decay rate constants of all porphyrins were around 1.50 ×106 s-1 and 2.35 ×104 s-1 for aerated and degassed solutions respectively.

Downloads

Download data is not yet available.

References

Al-Mutairi, R., Tovmasyan, A., Batinic-Haberle, I., and Benov, L. (2018). Sublethal photodynamic treatment does not lead to development of resistance. Front. Microbiol, 9, 1699.

Balaji B., Mack J., and Tebello N. (2021). Photodynamic activity of Sn(IV) tetrathien-2-ylchlorin against MCF-7 breast cancer cells, Dalton Trans., 50, 2177–2182.

Barbosa Neto, N. M., Correa, D. S., De Boni, L., Parra, G. G., Misoguti, L., Mendonça, C. R., et al. (2013). Excited states absorption spectra of porphyrins solvent effects. Chem. Phys. Lett, 587, 118–123

Calzavara-Pinton P.G, Venturini M. and Sala R. (2007). Journal of the European Academy of Dermatology and Venereology, 21, 293–302.

Donlan, R.M. (2002). Biofilms: microbial life on surface. Emerg. Infect. Dis, 8,881–890.

Mamone, L., Ferreyra, D. D., Gándara, L., Di Venosa, G., Vallecorsa, P., Sáenz, D. (2016). Photodynamic inactivation of planktonic and biofilm growing bacteria mediated by a meso-substituted porphyrin bearing four basic amino groups. J. Photochem. Photobiol. B, 161, 222–229.

Mirzahosseinipour, M., Khorsandi, K., Hosseinzadeh, R., Ghazaeian, M., and Shahidi, F.K. (2020). Antimicrobial photodynamic and wound healingactivity of curcumin encapsulated in silica nanoparticles. Photodiagnosis Photodyn Ther, 29, 101639.

Muthumuni Managa, Bokolombe Pitchou Ngoy and Tebello Nyokong. (2019). Photophysical properties and photodynamic therapy activity of a meso-tetra (4-carboxyphenyl) porphyrin tetramethyl ester–graphene quantum dot conjugate, New J. Chem, 43, 4518.

Muthumuni M, Bokolombe P.N, Donovan M., Tebello., N. (2018). Incorporation of metal free and Ga 5, 10, 15,20-tetrakis (4-bromophenyl) porphyrin into Pluronic F127-folic acid micelles Journal of Luminescence 194, 739–746

Openda Y.I., Bokolombe P. Ngoy and Tebello N. (2021). Photodynamic Antimicrobial Action of Asymmetrical Porphyrins Functionalized Silver-Detonation Nanodiamonds Nanoplatforms for the Suppression of Staphylococcus aureus Planktonic Cells and Biofilms, Frontiers in Chemistry, March, 9, 628316

Pereira, M.M., Muller, G., Ordinas J.I., Azenhaa M.E., Arnaut L.G. (2002). Synthesis of vinylated 5, 10, 15,20-tetraphenylporphyrins via Heck-type coupling reaction and their photophysical properties, J. Chem. Soc. Perkin Trans. 2, 1583–1588.

Pomarico E. (2018). “Photophysical Heavy-Atom Effect in Iodinated Metallocorroles: Spin-Orbit Coupling and Density of States,” Journal of Physical Chemistry A, 122, 7256–7266.

Robertson C.A., Evans D.H. and Abrahamse H. (2009). Journal of Photochemistry and Photobiology B: Biology, 96, 1–8.

Ryskova L., Buchta V., Slezak R. (2010). Central Eur. J. Biology, 5, 400–406.

Saczko J., Chwiłkowska A., Kulbacka J., Berdowska I., Zieliński B., Drag-Zalesińska M., Wysocka T., Ługowski M. and Banaś T. (2008). Folia Biologica, 54, 24–29

Şen P., C. Hirel, A. G. Gürek, C. Andraud, Y. Bretonnière, and M. Lindgren. (2018). “Photophysical properties and study of the singlet oxygen generation of tetraphenylporphyrinato palladium(II) complexes,” Journal of Porphyrins and Phthalocyanines, 17, 964–971.

Spellberg B., Guidos R., Gilbert D., Bradley J., Boucher H. W., Scheld W. M, Bartlett J. G. and Edwards J.Jr., (2008). The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America, Clin. Infect. Dis., 46, 155–164.

V. A. Online., “enhancement of spin – orbit coupling in organic,” (2022)., pp. 11719–11729.

Wardlaw J.L., Sullivan T.J., Lux C.N., Austin F.W. Vet. J. (2012). 192, 374−377

Xu Z., Gao, Y. Meng, S., Yang, B., Pang, L.,Wang, C. (2016). Mechanism and in vivo evaluation: photodynamic antibacterial chemotherapy of lysine-porphyrin conjugate. Front. Microbiol, 7, 242.

Downloads

Published

2026-02-13

Similar Articles

1-10 of 59

You may also start an advanced similarity search for this article.