Effect of acid activation on adsorption properties of some clay materials from South-East of the Democratic Republic of Congo
Main Article Content
Abstract
The effect of acid activation of some clay materials in the South-East of the Democratic Republic of Congo was studied, in the interest of considering the substitution of imported clays as adsorbents. Depending on abundance, type of supporting soil and accessibility in this region, six clay materials were chosen including two taken from the montmorillonite-rich soils (Malambwe and Kasenga), one from the kaolinite-rich soil (Kazembe) and three others (Lufira, Kalubwe, and Kyowelo) taken from soils with equivalent proportions of montmorillonite and kaolinite. Acid concentration, time, temperature and impregnation ratio were studied during activation for which the effect was evaluated by the cation exchange capacity (CEC) after contact with a solution of methylene blue as adsorbate. The results showed that activation did not significantly improve the adsorbent power with increases in CEC which barely exceeded 30% with the exception of the Kazembe sample which gave an increase of 50%. Clay materials can therefore be used without prior activation and remain competitive in this case the samples rich in montmorillonite which gave the best CEC values of 110 mmol/100g for Malambwe and 82 mmol/100g for Kasenga, the others having values less than 73 mmol/100g. However, these performances remain slightly lower than those of imported clays which gave 143 and 119 mmol/100g respectively for Bentonite and Tonsil.
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Adams, J. M., & McCabe, R. W. (2006). Clay Minerals as Catalysts. In F. Bergaya, B.K.G. Theng, & G. Lagaly (Eds.), Developments in Clay Science, (pp. 541‑581). Amsterdam, Elsevier. https://doi.org/10.1016/S1572-4352(05)01017-2
Al Kausor, M., Sen Gupta, S., Bhattacharyya, K. G., & Chakrabortty, D. (2022). Montmorillonite and modified montmorillonite as adsorbents for removal of water soluble organic dyes : A review on current status of the art. Inorganic Chemistry Communications, 143, 109686. https://doi.org/10.1016/j.inoche.2022.109686
Amari, A., Gannouni, H., Khan, M., Almesfer, M., Elkhaleefa, A., & Gannouni, A. (2018). Effect of Structure and Chemical Activation on the Adsorption Properties of Green Clay Minerals for the Removal of Cationic Dye. Applied Sciences, 8(11), 2302. https://doi.org/10.3390/app8112302
Bahwa, C. & Zeka, L. (2023). Localisation des sites d’échantillonnage de différentes argiles étudiées (Haut-Katanga: KAS, MAL, KAL et LUF ; Lualaba : KAZ et KYO) [Carte].
Babaki H., Salem A., Jafarizad A. (2008). Kinetic model for the isothermal activation of bentonite by sulfuric acid. Mater. Chem. Phys., 108, 263–268.
Berez, A. (2015). Dépollution par l’argile naturelle d’effluents teinturiers : Étude expérimentale et modélisation du processus d’adsorption / désorption en réacteur fermé et colonne de percolation [Thèse de Doctorat, Université de Strasbourg].
Clauer, N. (2005, avril). Les minéraux argileux : Leur rôle et importance dans un site de stockage de déchets radioactifs en couche argileuse profonde. L’actualité chimique, 285.
Crundwell, F. K., du Preez, N. B., & Knights, B. D. H. (2020). Production of cobalt from copper-cobalt ores on the African Copperbelt – An overview. Minerals Engineering, 156, 106450. https://doi.org/10.1016/j.mineng.2020.106450
Dudley, K., Virnig, M., Crane, P., & Hein, H. (2006). Clay Treatment for Copper Solvent Extraction Circuits [Communication]. Alta Conference, Australie.
España, V. A. A., Sarkar, B., Biswas, B., Rusmin, R., & Naidu, R. (2019). Environmental applications of thermally modified and acid activated clay minerals : Current status of the art. Environmental Technology & Innovation, 13, 383‑397.
Fernandes, C., Catrinescu C., Castilho P., Russo P.A., Carrott M.R., Breen C., (2007). Catalytic conversion of limonene over acid activated Serra de Dentro (SD) bentonite, Appl. Catalysis A: Gen. 318 ,108–120.https://doi.org/10.1016/j.eti.2016.11.005
Gannouni, A. & Bellagi, A. (2001). Activation acide de quelques argiles du sud tunisien I. Préparation de terres décolorantes pour huiles végétales. Journal de la société chimique de Tunisie, 4(10) 1357-1368.
Hussin, F., Aroua, M. K., & Daud, W. M. A. W. (2011). Textural characteristics, surface chemistry and activation of bleaching earth : A review. Chemical Engineering Journal, 170(1), 90‑106.https://doi.org/10.1016/j.cej.2011.03.065
Hutzler, B., Cole, P., Thomas, L., Bednarski, T., & Zambra, R. (2015). Clay Treatment Improvements Using ACORGA® CB1000 Clay Binder [Communication]. Southern African Institute of Mining and Metallurgy, Copper Cobalt Africa 8th Base Metal Conference, Joannesbourg.
Kabumana, D. T., Twite, E., Twite, P., Kanyembo, A., & Lubamba, J. (2020). Evaluation of the performance of a local acid activated clay on the decontamination of solvent extraction plant organic. Journal of Applied Chemistry, 13(5), 43‑53.
Kaviratna, H., & Pinnavaia, T.J. (1994). Acid hydrolysis of octahedral Mg2+ sites in 2:1 layered silicates: an assessment of edge attack and gallery access mechanisms. Clays Clay Miner., 42, 717–723.
Khan, W. S., Asmatulu, E., Uddin, Md. N., & Asmatulu, R. (2022). Recycling and reusing of used lubricating oils. In W.S. Khan, E. Asmatutu, M. Uddin & R. Asmatulu (Eds.), Recycling and Reusing of Engineering Materials (p. 213‑232). Amsterdam, Elsevier. https://doi.org/10.1016/B978-0-12-822461-8.00010-3
Koller, E. (2010). Aide-mémoire Génie chimique (3è éd). Paris, Dunod.
Konrad, J.-M., & Gabezas, F. A. V. (2008). Caractérisation des particules fines d’un matériau granulaire de fondation par l’essai au bleu de méthylène [Rapport de recherche, Université Laval].
Madejová J., Bujdák J., Janek M., Komadel P. (1998). Comparative FT-IR study of structural modifications during acid treatment of dioctahedral smectites and hectorite, Spectrochim. Molecular and Biomolecular Spectroscopy, 54, 1397-1406. https://doi.org/10.1016/S1386-1425(98)00040-7
Mukherjee, S., & Ghosh, B. (2013). The science of clays : Applications in industry, engineering and environment. Dordrecht, Springer.
Ngongo, M. L., Van Ranst, Baert, G., Kasongo, E., Verdoodt, A., Mujinya, B., & Mukalay, J. (2009a). Guide des sols en République Démocratique du Congo. Tome I: étude et gestion (Vol. 1). Lubumbashi, Don Bosco.
Ngongo, M. L., Van Ranst, Baert, G., Kasongo, E., Verdoodt, A., Mujinya, B., & Mukalay, J. (2009b). Guide des sols en République Démocratique du Congo. Tome II: description et données physicochimiques (Vol. 1). Lubumbashi, Don Bosco
Shengo, M. L., Kime, M.-B., Mambwe, M. P., & Nyembo, T. K. (2019). A review of the beneficiation of copper-cobalt-bearing minerals in the Democratic Republic of Congo. Journal of Sustainable Mining, 18(4), 226‑246. https://doi.org/10.1016/j.jsm.2019.08.001
Srasra, E. (2002). Argile et acidité. Mécanisme de l’activation acide et propriétés résultantes [Thèse de Doctorat, Univesrité de Tunis].
Sole, K. C. (2016). Copper solvent extraction : Status, operating practices, and challenges in the African Copperbelt. Journal of the Southern African Institute of Mining and Metallurgy, 116(6), 553‑560. https://doi.org/10.17159/2411-9717/2016/v116n6a10
Valenzuela-Diaz F.R., Souza-Santos P. (2001). Studies on the acid activation of Brazilian smectite clays. Quim. Nova., 24,345–353.
Vernhet, A. (2019). Red Wine Clarification and Stabilization. In A. Morata (Ed), Red Wine Technology (p.237‑251). Amsterdam, Elsevier. https://doi.org/10.1016/B978-0-12-814399-5.00016-5
Wetshondo, D. (2012). Caractérisation et valorisation des matériaux argileux de la Province de Kinshasa (RD Congo) [Thèse de Doctorat, Université de liège].
Wypych, F., & de Freitas, R. A. (2022). Clay minerals : Classification, structure, and properties. In F. Wypych & R. A. de Freitas (Éds.), Developments in Clay Science (Vol. 10, p. 3‑35). Amsterdam, Elsevier. https://doi.org/10.1016/B978-0-323-91858-9.00004-5