Optimized biodiesel production from Carapa procera and Hura crepitans seed oils using acid and basic catalysts derived from seed hulls

Main Article Content

Michée Kazadi Mputu
Priscille Kwalul
Arsene Muabu
Ismael Mulumba
Arnold Mulula
Taba Kalulu
Théodore Kazadi
Kasuku Wanduwa
Joséphine Ntumba

Abstract

The increasing demand for stocks. Trenewable energy sources has spurred interest in biodiesel production from non-conventional feedhis study
investigated the production of biodiesel from oils extracted from Carapa procera and Hura crepitans seeds, utilizing acid and basic catalysts
derived from their hulls. Oils from Carapa procera (HCP) and Hura crepitans (HHC) were transesterified with ethanol, employing an acidic
catalyst for HCP and a basic catalyst for HHC, both synthesized from the respective seed hulls. The basic catalyst derived from Hura crepitans
hulls demonstrated effective transesterification and maintained catalytic activity over multiple uses. High yields of ethyl esters were obtained
for both Carapa procera (EEHCP) and Hura crepitans (EEHHC) oils. A B10 blend of EEHHC and fossil diesel met various ASTM D6751
specifications, including pour point, appearance, flash point, color, sulfur content, and density. The B10 blend also adhered to ASTM standards
for viscosity, distillation, cetane number, copper corrosion, and carbon residue. However, B100 biodiesel from Carapa procera exhibited
viscosity and acid number values slightly outside the standard limits, as did the viscosity of EEHHC, requiring further treatment, such as
extended reaction time or blending with petrodiesel for viscosity adjustment. Based on these findings, Hura crepitans biodiesel can be blended
with commercial diesel up to 10% by volume, meeting ASTM standards and making it suitable for use in diesel engines. Additional optimization
is recommended for B100 from Carapa procera to ensure full compliance with biodiesel specifications. 

Article Details

Section

Articles

References

Abdelouahed, S., Boulghiti, H., & Kalloum, S. (2016). Preparation of biodiesel from vegetable oil using a heterogeneous catalyst. [Doctoral Thesis, University Ahmed Draïa-Adrar]. https://dspace.univ-adrar.edu.dz/jspui/handle/123456789/2643.

Ajala, O.O., Oyelade, J.O., Oke, E.O., Oniya, O.O., & Adeoye, B.K. (2023). A nonlinear autoregressive exogenous neural network (NARX-NN) model for the prediction of solvent-based oil extraction from Hura crepitans seeds. Chem. Prod. Process Model, 18(4), 647–655. https://doi.org/10.1515/cppm-2022-0032.

Athar, M., Imdad, S., Zaidi, S., Yusuf, M., Kamyab, H., Klemeš, J.J., Chelliapan, S. (2022). Biodiesel production by single-step acid-catalysed transesterification of Jatropha oil under microwave heating with modelling and optimisation using response surface methodology. Fuel, (322), 124205. https://doi.org/10.1016/j.fuel.2022.124205.

ASTM International. (2006). ASTM D4052-96 Standard test method for density of liquid by digital density meter. Annual Book of ASTM Standards.

ASTM International. (2006). ASTM D445-04 Standard method for kinematic viscosity of transparent and opaque liquids (and calculation of dynamic viscosity). Annual Book of ASTM Standards.

ASTM International. (2006). ASTM D97-05a Standard test method for pour point of petroleum products. Annual Book of ASTM Standards.

ASTM International. (2006). ASTM D4294 Standard test method for sulfur in petroleum and petroleum products by energy dispersive X-ray fluorescence spectrometry. Annual Book of ASTM Standards.

ASTM International. (2006). ASTM D130 Standard test method for corrosiveness to copper from petroleum products by copper strip test. Annual Book of ASTM Standards.

ASTM International. (2006). ASTM D1500-04a Standard test method for ASTM color of petroleum products (ASTM color scale). Annual Book of ASTM Standards.

ASTM International. (2006). ASTM D93-02a Standard test method for flash point by Pensky-Martens closed cup tester. Annual Book of ASTM Standards.

Banga, S., & Pathak, V.V. (2023). Biodiesel production from waste cooking oil: A comprehensive review on the application of heterogenous catalysts. Energy Nexus, (10), 100209. https://doi.org/10.1016/j.nexus.2023.100209.

Bettahar, Z., Cheknane, B., & Boutemak, K. (2016). Étude de la transestérification d’un mélange des huiles usagées pour la production du biodiesel. J. Renew. Energies, 19(4), 605–615.

Dwivedi, G., Jain, S., Shukla, A.K., Verma, P., Verma, T.N., & Saini, G. (2022). Impact analysis of biodiesel production parameters for different catalyst. Environ. Dev. Sustain, 1–21. https://doi.org/10.1007/s10668-021-02073-w.

Fadairo, A.A., Wong, P.K., Ip, W.F., Ghadikolaei, M.A., Zhe, C., Ng, B., & Lian, Z.D. (2024). Impact of neem oil biodiesel blends on physical and chemical properties of particulate matter emitted from diesel engines. Environ. Pollut,124972. https://doi.org/10.1016/j.envpol.2024.124972.

Fonseca, J.M., Teleken, J.G., Cinque A., V., & da Silva, C. (2019). Biodiesel from waste frying oils: Methods of production and purification. Energy Convers. Manag, 18(4), 205–218. https://doi.org/10.1016/j.enconman.2019.01.061.

Hasannia, S., Kazemeini, M., & Seif, A. (2024). Optimizing parameters for enhanced rapeseed biodiesel production: A study on acidic and basic carbon-based catalysts through experimental and DFT evaluations. Energy Convers. Manag, 303, 118201. https://doi.org/10.1016/j.enconman.2024.118201

Image Hura crepitans seeds. Disponible à : https://www.shop-vegetable.com/wp-content/uploads/2019/09/hura_crepitans_seeds-e1637158302573.jpg.

Kabayo, S.M., Kindala, J.T., Nkanga, C.I., Krause, R.W., & Taba, K.M. (2019). Preparation and characterization of solid acid catalysts derived from coffee husks. Int. J. Chem. Sci, 3(6), 5–13.

Kouassi, A., Konan, J., N’Cho, A.J., & Kouadio, M.N. (2023). Effect of biological activity of Carapa procera DC. (Meliaceae) seed oil on the tomato leaf miner, Tuta absoluta Meyrick 1917 (Lepidoptera: Gelechiidae). PREPRINT (Version 1) available at Research Square.. https://doi.org/10.21203/rs.3.rs-2776778/v1.

Lankoandé, B., Ouédraogo, A., Boussim, J.I., & Lykke, A.M. (2017). Identification of determining traits of seed production in Carapa procera and Pentadesma butyracea, two native oil trees from riparian forests in Burkina Faso, West Africa. Biomass Bioenergy, 102, 37–43. https://doi.org/10.1016/j.biombioe.2017.04.002.

Li, N., Miao, X., & Xue, B. (2024). rGO@CaO/NiO as a bifunctional heterogeneous nanocatalyst for high-quality biodiesel production from degraded waste oil by microwave-assisted: Diesel engine parameters assessment. Renewable Energy, 121513. https://doi.org/10.1016/j.renene.2024.121513.

Lompo J. M. D. (2008). Analysis and sizing of the production processes for the fuels of the future: Esterification processes. [Memory for obtaining the rural equipment engineer, International Institute for water and Environemental Engeneering], (72), 14-20.

Mulula, A., Bouzina, A., Debroux, B., Muabu, A., Mukebu, E., Ntumba, J.K., & Manoka, T.N. (2024). Valorization of Afzelia bella oilseeds cake in bioethanol production using 1-butyl-3-methyl-imidazolium chloride ionic liquid and dilute sulfuric acid pretreatment. Notulae Scientia Biologicae, 16(2), 11967-11967. https://doi.org/10.55779/nsb16211967.

Mulula, A., Manoka, T.N. Physicochemical properties of biodiesel from Congolese non-edible oleaginous plant Allanblackia floribunda Oliv. 2021. Sch. Int. J. Chem. Mater. Sci, 4(11), 304–309.

Mulula, A., Thierno, N.M., Bayindu, E.B., & Bouzina, A.D. (2022). Fourier Transform Infrared (FTIR) Analysis of Fatty Acid Methyl Ester from Congolese non-edible Afzelia bella seeds oil. Asian J. Appl. Chem. Res., 11(4), 15–24. https://doi.org/10.9734/ajacr/2022/v11i430262

Nonviho, G., Paris, C., Muniglia, L., Sessou, P., & Agbangnan, D.C.P. (2014). Chemical characterization of Lophira lanceolata and Carapa procera seed oils: Analysis of fatty acids, sterols, tocopherols, and tocotrienols. Res. J. Chem. Sci., 4(9), 57–62. https://hal.univ-lorraine.fr/hal-01592604v1.

Nsomue, J.M., Bolangongo, M.N., Mulula, A., Mbuyi, K.H., Kashishi, K.T., Taba, K.M., & Ntumba, J.K. (2022). Valorization of Carapa procera oil and evaluation in vitro of antimalarial activity of its bitter content. Int. Res. J. Pure Appl. Chem., 23(3), 10–18. https://doi.org/10.9734/irjpac/2022/v23i330462.

Ntumba, J.K., Mulula, A., Kashishi, K.T., Mifundu, M.N., Robiette, R., & Taba, K.M. (2017). Physicochemical properties of diacetylenic light fuel oil from Congolese oleaginous plant Ongokea gore (Hua) Pierre. J. Appl. Chem., 1, 7176317. https://doi.org/10.1155/2017/7176317.

Oyekunle, D.T., Gendy, E.A., Barasa, M., Oyekunle, D.O., Oni, B., & Tiong, S.K. (2024). Review on utilization of rubber seed oil for biodiesel production: Oil extraction, biodiesel conversion, merits, and challenges. Cleaner Eng. Technol, 100773. https://doi.org/10.1016/j.clet.2024.100773.

Oyelade, J.O., Idowu, D.O., Oniya, O.O., & Ogunkunle, D.O. (2017). Optimization of biodiesel production from sandbox (Hura crepitans L.) seed oil using two different catalysts. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39(12),1242–1249. https://doi.org/10.1080/15567036.2017.1320691.

Owaba, A.D., Arueniobebh, F., Bunu, S.J., Rafiu, R.O., Johnson, E.C., & Etim, E.I. (2024). Spectroscopic analysis, aphrodisiac potential of Carapa procera stem bark extract in male Wistar rats and in silico studies of hexadecanoic and oleic acids on phosphodiesterase-5 and adenylcyclase enzymes. Biomed. J. Sci. Tech. Res, 54(5), 46343–46356. http://dx.doi.org/10.26717/BJSTR.2024.54.008609.

Paparao, J., Bhopatrao, S., Murugan, S., Kuti, O.A. (2023). Optimization of a low heat rejection engine run on oxy-hydrogen gas with a biodiesel-diesel blend. Fuel Process, Technol., 241, 107625. https://doi.org/10.1016/j.fuproc.2022.107625.

Prahmana, R.A., Darmanto, P.S., Juangsa, F.B. Reksowardojo, I.K., Prakoso, T., & Hendrarsakti. (2024). Experimental investigation on the effects of zinc oxide and goethite as additives in a diesel engine fueled by pure palm oil. Case Stud. Therm. Eng. 61, 104993. https://doi.org/10.1016/j.csite.2024.104993.

Rajpoot, A.S., Choudhary, T., Chelladurai, H., Rajak, U., & Sahu, M.K. (2023). Comparison of the effect of CeO2 and CuO2 nanoparticles on performance and emission of a diesel engine fueled with Neochloris oleoabundans algae biodiesel. Mater. Today Proc, 2214-7853. https://doi.org/10.1016/j.matpr.2023.03.233.

Sanogo, S., Sacandé, M., Van Damme, P., & NDiaye, I. (2013). Caractérisation, germination et conservation des graines de Carapa procera DC. (Meliaceae), une espèce utile en santé humaine et animale. Biotechnol. Agron. Soc. Environ, 17(2), 321–331. http://www.bib.fsagx.ac.be/base/.

Sebayang, A.H., Kusumo, F., Milano, J., Shamsuddin, A.H., Silitonga, A.S., & Ideris, F. (2023). Optimization of biodiesel production from rice bran oil by ultrasound and infrared radiation using ANN-GWO. Fuel, (346), 128404. https://doi.org/10.1016/j.fuel.2023.128404.

Silou, T. 2014. Corps gras non conventionnels du Bassin du Congo : Caractérisation, biodiversité et qualité. OCL, 21(2). https://doi.org/10.1051/ocl/2013044.

Silou, T., Moussounda-Moukouari, R., Bikanga, R., Pamba-Boundena, H., Moussoungou, T., Mampouya, D., & Chalchat, J.C. (2017). Small-scale production in the Congo basin of low-acid carotene-rich red palm oil. OCL, 24(5). https://doi.org/10.1051/ocl/2017017.

Vellaiyan, S., Aljohani, K., Aljohani, B.S., & Reddy, B.S.R. (2024). Enhancing waste-derived biodiesel yield using recyclable zinc sulfide nanocatalyst: Synthesis, characterization, and process optimization. Results Eng, (23), 102411. https://doi.org/10.1016/j.rineng.2024.102411.